Imágenes de páginas
PDF
EPUB

length of the plane exceeds its perpendicular height, so much is the advantage gained; if, for instance, its length be three times greater than its height, a weight could be drawn to its summit with a third part of the strength required for lifting it up at the end; but, in accordance with the principle so frequently alluded to, such a power will be at the expense of time, for there will be three times more space to pass over. The reason why horses are eased by taking a zigzag direction, in ascending or descending a steep hill, will appear from the preceding account of the action of the inclined plane, because in this way the effective length of the inclining surface is increased while its height remains the same.

THE WEDGE is rather a compound, than a distinct mechanical power; since it is composed of two inclined planes, and in action frequently performs the functions of a lever. It is sometimes employed in raising bodies, thus the largest ship may be raised to a small height by driving a wedge below it; but its more common application is that of dividing and cleaving bodies. As an elevator, it resembles exactly the inclined plane; for the action is obviously the very same, whether the wedge be pushed under the load, or the load be drawn over the wedge. But wheu the wedge is drawn forward, the percussive tremor excited destroys, for an instant, the adhesion or friction at its sides, and augments prodigiously the effect. From this principle chiefly is derived the power of the wedge in rending wood and other substances. It then acts besides as a lever, insinuating itself into the cleft as fast as the parts are opened by the vibrating concussion. To bring the action of the wedge, therefore,

under a strict calculation, would be extremely difficult, if not impossible. Its effects are chiefly discovered by experience. All the various kinds of cutting tools, such as axes, knives, chisels, saws, planes, and files, are only different modifications of the wedge.

THE SCREW is a most efficient mechanic power, and is of great force and general application. It is in reality nothing more than an inclined plane formed round a cylinder, instead of being a continued straight line. Its power is, therefore, estimated by taking its circumference, and dividing this by the distance between any two of its threads; for what is taking the circumference of a screw, but another mode of measuring the length of the inclined plane which wraps round it? and taking the distance between one thread and the next to it, is but measuring the rise of that inclined plane in such length; and from the properties of the inclined plane, it follows, that the closer the threads of a screw are together, in proportion to its diameter, the greater will be the power gained by it.

NOTE 6. p. 162.

If some extraneous force were were not applied, in a clock or watch, to maintain or perpetuate the natural vibrations of a pendulum, or oscillations of a balance, they would soon come to rest, by reason of friction in the mechanism, and the resistance opposed by the air to the parts in motion. This force, in the larger clocks, is usually a suspended weight; but, in the portable clock and watches, it is a spring coiled in a metallic box, that actuates the wheel-work by gradually unbending itself.

[ocr errors]

In the former of these cases, the weight is suspended by a cord or chain that is coiled round a cylinder when wound up, which cylinder being of uniform diameter throughout its length, is acted on by the cord, when fast at the interior end, by a similar force in every situation; and, therefore, imparts through the train, connected with its great wheel, invariable impulses to the escapement-wheel, at every vibration of the pendulum; which pendulum receives therefrom such a slight push, as is just sufficient to restore the momentum which it loses from friction and the air's resistance, and thus the uniform motion of the pendulum is perpetuated. But when a spring is substituted for a weight, it is clear that its agency cannot be uniform, since, as the reader will learn by turning to page 171., it is a general law, that elastic bodies, in the recovery of their form, after the removal of the compressing force, exert a greater power at first than at last, so that the whole progress of restoration is a retarded motion. It, therefore, became necessary to introduce some mechanical contrivance which might equalize such motion. This correction is effected by an apparatus termed a FUSEE, and is nothing more than the application of the wheel and axle; it is that conical barrel seen in most watches round which the chain coils in the act of winding up. When the fusee is full of chain, or the watch is wound up, the spring, through the medium of the chain, will act upon its upper part, which being very near the centre will give the spring but little power; but, as the spring uncoils and diminishes in strength, it will act upon a larger part of the fusee, until at last it gets to the bottom of it, and consequently, if the several increasing grooves upon it are made

to increase in the same proportion as the power of the spring decreases, an equable force must be obtained.

NOTE 7. p. 162.

The elastic property of iron springs has been lately exemplified in a very striking manner, by the invention of Pratt's elastic chairs and beds; which, instead of the usual stuffing of feathers, are filled with iron wire!!! which is twisted into spiral form. Down itself cannot be more gentle nor springy; it yields to pressure, and yet never becomes lumpy: beds thus constructed have the advantage of not heating the body; and, above all, they never require to be shaken or "made." Had Vulcan fortunately made such a discovery before his ejectment from Olympus, his wife, Venus, would surely never have treated him with that contempt which mythologists have recorded of her; while her priestesses, the house-maids, must, in gratitude, have been bound to extend their protection to a benefactor, who could save them so much daily labour. For particulars of this curious invention, the reader may con sult the Literary Gazette for March 17. 1827.

NOTE 8. p. 164.

The phenomenon has been explained as depending upon the inertia of the parts of matter, which renders a certain time necessary in order to communicate to any body a sensible motion; so that when a body, moving with considerable velocity, meets with another of much greater size, it experiences almost as much resistance as if the latter were fixed. Nothing is easier to be divided than

water; yet, if the palm of the hand be struck with some velocity against its surface, a considerable degree of resistance, and even of pain, is experienced from it, as if a solid body had been struck; nay, a musket-ball, when fired against water, is repelled and even flattened by it. In like manner, if we load a musket with powder, and instead of a ball, introduce a candle, and fire it against a board, the latter will be pierced by the candle end, as if by a ball. The cause of this phenomenon, no doubt, is that the rapid motion with which the candle end is impelled, does not allow it time to be flattened, and therefore it acts as a hard body.

NOTE 9. p. 165.

Impatiens, or Touch me not, affords a good example. The seed-vessel consists of one cell with five divisions; each of these, when the seed is ripe, on being touched, suddenly folds itself into a spiral form, leaps from the stalk, and disperses the seeds to a great distance by its elasticity. The capsule of the geranium and the beard of wild oats are twisted for a similar purpose. (DARWIN'S Botanic Garden.) The seed-vessel of euphorbia is extremely elastic, projecting the seeds with great force. An elastic pouch also serves to scatter the seeds of the oxalis.

NOTE 10. p. 173.

"When a native of Macoushi goes in quest of feathered game, or other birds, he seldom carries his bow and arrows. It is the blow-pipe he then uses. This extraordinary tube of death is, perhaps, one of the greatest

« AnteriorContinuar »