Imágenes de páginas
PDF
EPUB

vantage is gained in proportion as the distance of the power is greater than the distance of the weight from the fulcrum; if, for instance, the weight hang at one inch from the fulcrum, and the power acts at five inches from it, the power gained is five to one; because, in such a case, the power passes over five times as great a space as the weight. It is thus evident why there is considerable difficulty in pushing open a heavy door, if the hand is applied to the part next the hinges, although it may be opened with the greatest ease in the usual method. In the third kind of lever, the fulcrum is again at one of the extremities, the weight or resistance at the other; and it is now the power which is applied between the fulcrum and resistance. As in this case the weight is farther from the centre of motion than the power, such a lever is never used, except in cases of absolute necessity, as in the case of lifting up a ladder perpendicularly, in order to place it against a wall. The man who raises it cannot place his hands on the upper part of the ladder; the power, therefore, is necessarily placed much nearer the fulcrum than the weight; for the hands are the power, the ground the fulcrum, and the upper part of the ladder the weight. The use of the common fire-tongs is another example, but the circumstance that principally gives this lever importance is, that the limbs of men and animals are actuated by it; for the bones are the levers, while the joints are the fulcra, and the muscles which give motion to the limbs, or produce the power, are inserted and act close to the joints, while the action is produced at the extremities; the consequence of such an arrangement is, that although the muscles must necessarily exert an

enormous con

tractile force to produce great action at the extremities, yet a celerity of motion ensues which could not be equally

We may adduce

In lifting a weight

well provided for in any other manner. one example in illustration of this fact. with the hand, the lower part of the arm becomes a lever of the third kind; the elbow is the fulcrum; the muscles of the fleshy part of the arm the power; and as these are nearer to the elbow than the hand, it is necessary that their power should exceed the weight to be raised. The disadvantage, however, with respect to power, is more than compensated by the convenience resulting from this structure of the arm; and it is no doubt that which is best adapted to enable it to perform its various functions. From these observations it must appear, that although this arrangement must be mentioned as a modification of the lever, it cannot, in strictness, be called a mechanical power; since its resisting arm is in all cases, except one, longer than the acting arm, and in that one case is equal to it, on which account it never can gain power, but in most instances must lose it.

The Wheel and AXLE is the next mechanical power to be considered; it must be well known to every reader who has seen a village well; for it is by this power that the bucket is drawn up, although in such cases, instead of a wheel attached to the axle, there is generally only a crooked handle, which answers the purpose of winding the rope round the axle, and thus raising the bucket, as may be seen in the engraving at the head of our third Chapter. It is evident, however, that this crooked handle is equivalent to a wheel; for the handle describes a circle as it revolves, while the straight piece which is united to

the axle corresponds with the spoke of a wheel. This power may be resolved into a lever; in fact, what is it but a lever moving round an axle ? and always retaining the effect gained during every part of the motion, by means of a rope wound round the butt end of the axle ; the spoke of the wheel being the long arm of the lever, and the half diameter of the axle its short arm. The axle is not in itself a mechanical power, for it is as impotent as a lever, whose fulcrum is in the centre; but add to it the wheel, and we have a power which will increase in proportion as the circumference of the wheel exceeds that of the axle. This arises from the velocity of the circumference being so much greater than that of the axle, as it is further from the centre of motion; for the wheel describes a great circle in the same space of time that the axle describes a small one; therefore the power is increased in the same proportion as the circumference of the wheel is greater than that of the axle. Those who have ever drawn a bucket from a well by this machine, must have observed, that as the bucket ascended nearer the top the difficulty increased; such an effect must necessarily follow from the views we have just offered; for whenever the rope coils more than once the length of the axle, the difference between its circumference and that of the wheel is necessarily diminished. To the principle of the wheel and axle may be referred the capstan, windlass, and all those numerous kinds of cranes which are to be seen at the different wharfs on the banks of the river Thames. It is scarcely necessary to add, that the force of the wind-mill depends upon a similar power. The tread-mill furnishes another striking example. The wheel

and axle is sometimes used to multiply motion, instead of to gain power, as in the multiplying wheel of the common jack, to which it is applied when the weight cannot conveniently have a long line of descent; a heavy weight is in this case made to act upon the axle, while the wheel, by its greatest circumference, winds up a much longer quantity of line than the simple descent of the weight could require, and thus the machine is made to go much longer without winding than it otherwise would do.

THE PULLEY is a power of very extensive application. Every one must have seen a pulley; it is a circular and flat piece of wood or metal, with a string which runs in a groove round it. Where, however, this is fixed, it cannot afford any power to raise a weight; for it is evident, that, in order to raise it, the power must be greater than the weight, and that if the rope be pulled down one inch, the weight will only ascend the same space; consequently, there cannot be any mechanical advantage from the arrangement. This, however, is not the case, where the pulley is not fixed. Suppose one end of the rope be fastened to a hook in the ceiling, and that to the moveable pulley on the rope a cask be attached, is it not evident that the hand applied to the other extremity of the rope will sustain it more easily than if it held the cask suspended to a cord without a pulley? Experience shows that this is the fact, and theory explains it by suggesting that the fixed hook sustains half the weight, and that the hand, therefore, has only the other half to sustain. The hook will also afford the same assistance in raising the weight as in sustaining it; if the hand has but one half the weight to sustain, it will also have only one half

the weight to raise; but observe, says Mrs. Marcet, that in raising the weight, the velocity of the hand must be double that of the cask; for in order to raise the weight one inch the hand must draw each of the strings one inch; the whole string is therefore shortened two inches, while the weight is raised only one. Pulleys then act on the same principle as the lever, the deficiency of strength of the power being compensated by its superior velocity. It will follow, from these premises, that the greater the number of pulleys connected by a string, the more easily the weight is raised, as the difficulty is divided amongst the number of strings, or rather of parts into which the string is divided by the pulleys. Several pulleys, thus connected, form what is called a system, or tackle of pulleys. They may have been seen suspended from cranes, to raise goods into warehouses, and in ships to draw up the sails.

THE INCLINED PLANE is a mechanic power which is seldom used in the construction of machinery, but applies more particularly to the moving or raising of loads upon slopes or hills, as in rolling a cask up or down a sloping plank into or out of a cart or cellar, or drawing a carriage up a sloping road or hill, all which operations are performed with less exertion than would be required if the same load were lifted perpendicularly. It is a power which cannot be resolved into that of the lever; it is a distinct principle, and those writers who have attempted to simplify the mechanical powers, have been obliged to acknowledge the inclined plane as elementary. The method of estimating the advantage gained by this mechanical power is very easy; for just as much as the

« AnteriorContinuar »