Imágenes de páginas
PDF
EPUB
[graphic][merged small][subsumed][merged small][merged small]

Indeed, the chemistry of this century is a new world, of which all the previous discoveries in that line were but floating nebulæ.

So vast and astonishingly fast has been the growth and development of this science that before the century was two-thirds through its course Watts published his Dictionary of Chemistry in five volumes, averaging a thousand closely printed pages, followed soon by a thousand-page supplement; and it would have required such a volume every year since to adequately report the progress of the science. Nomenclatures, formulæs, apparatuses and processes have all changed. It was deemed necessary to pub lish works on The New Chemistry, and Professor J. P. Cooke is the author of an admirable volume under that title.

We can, therefore, in this chapter only step from one to another of some of the peaks that rise above the vast surrounding country, and note some of the lesser objects as they appear in the vales below.

The leading discoveries of the century which have done so much to aid Chemistry in its giant strides are the atomic and molecular theories, the mechanics of light, heat, and electricity, the correlation and conservation of forces, their invariable quantity, and their indestructibility, spectrum analysis and the laws of chemical changes.

John Dalton, that humble child of English northcountry Quaker stock, self-taught and a teacher all his life, in 1803 gave to the world his atomic theory of chemistry, whereby the existence of matter in ultimate atoms was removed from the region of the speculation of certain ancient philosophers, and established on a sure foundation.

The question asked and answered by Dalton was, what is the relative weight of the atoms composing the elementary bodies?

He discovered that one chemical element or compound can combine with another chemical element, to form a new compound, in two different proportions by weight, which stand to each other in the simple ratio of one to two; and at the same time he published a table of the Relative weight of the ultimate particles of Gaseous and other Bodies. Although the details of this table have since been changed, the principles of his discovery remain unchanged. Says Professor Roscoe:

[ocr errors]

Chemistry could hardly be said to exist as a science before the establishment of the laws of combination in multiple proportions, and the subsequent progress of chemical science materially depended upon the determination of these combined proportions or atomic weights of the elements first set up by Dalton. So that among the founders of our science, next to the name of the great French Philosopher, Lavoisier, will stand in future ages the name of John Dalton, of Manchester."

Less conspicuous but still eminently useful were his discoveries and labours in other directions, in the expansion of gases, evaporation, steam, etc.

Wollaston and Gay-Lussac, both great chemists, applied Dalton's discovery to wide and most important fields in the chemical arts.

Also contemporaneous with Dalton was the great German chemist, Berzelius, who confirmed and extended the discoveries of Dalton. More than this, it has been said of Berzelius:

"In him were united all the different impulses which have advanced the science since the beginning

of the present epoch. The fruit of his labors is scattered throughout the entire domain of the science. Hardly a substance exists to the knowledge of which he has not in some way contributed. A direct descendant of the school of his countryman, Bergman, he was especially renowned as an analyst. No chemist has determined by direct experiment the composition of a greater number of substances. No one has exerted a greater influence in extending the field of analytical chemistry.”

As to light, the great Huygens, the astronomer and mathematician, the improver of differential calculus and of telescopes, the inventor of the pendulum clock, chronometers, and the balance wheel to the watch, and discoverer of the laws of the double refraction of light and of polarisation, had in the 17th century clearly advanced the idea that light was propagated from luminous bodies, not as a stream of particles through the air but in waves or vibrations of ether, which is a universal medium extending through all space and into all bodies. This fundamental principle now enters into the explanation of all the phenomena of light.

Newton in the next century, with the prism, decomposed light, and in a darkened chamber reproduced all the colours and tints of the rainbow. But there were dark lines in that beam of broken sunlight which Newton did not notice.

It was left to Joseph von Fraunhofer, a German optician, and to this century, and nearly one hundred years after Newton's experiments with the prism, to discover, with finer prisms that he had made, some 590 of these black lines crossing the solar spectrum. What they were he did not know, but con

« AnteriorContinuar »