Imágenes de páginas
PDF
EPUB

mand gives rise to more machines and develops other inventions and arts, all of which results in the employment of ten thousand people to every one thousand at work on the product originally.

CHAPTER V.

AGRICULTURAL INVENTIONS (concluded).

WHEN the harvest is ended and the golden stores of grains and fruits are gathered, then the question arises what shall be next done to prepare them for food and for shipment to the distant consumer.

If the cleaning of the grain and separating it from the chaff and dirt are not had in the threshing process, separate machines are employed for fanning and screening.

It was only during the last century that fanning mills were introduced; and it is related by Sir Walter Scott in one of his novels that some of his countrymen considered it their religious duty to wait for a natural wind to separate the chaff from the wheat; that they were greatly shocked by an invention which would raise a whirlwind in calm weather, and that they looked upon the use of such a machine as rebellion against God.

As to the grinding of the grain, the rudimentary means still exist, and are still used by rudimentary peoples, and to meet. exceptional necessities; these are the primeval hollowed stone and mortar and pestle, and they too were "the mills of the Gods " in Egyptian, Hebrew and Early Greek days: the quern that is, the upper running stone and the lower stationary grooved one-was a later Roman invention and can be found described only a century or two before the Christian era.

Crude as these means were they were the chief ones used in milling until within a century and a quarter ago.

In a very recent bright work published in London, by Richard Bennett and John Elton, on Corn Mills, etc., they say on this point: "The mill of the last century, that, by which, despite its imperfections, the production of flour rose from one of the smallest to one of the greatest and most valuable industries of the world, was essentially a structure of few parts, whether driven by water or wind, and its processes were exceedingly simple. The wheat was cleaned by a rude machine consisting of a couple of cylinders and screens, and an air blast passed through a pair of mill-stones, running very close together, in order that the greatest amount of flour might be produced at one grinding. The meal was then bolted, and the tailings, consisting of bran, middlings and adherent flour, again sifted and re-ground. It seems probable that the miller of the time had a fair notion of the high grade of flour ground from middlings, but no systematic method of procedure for its production was adopted."

The upper and the nether mill-stone is still a most useful device. The "dress," which consists of the grooves which are formed in the meeting faces of the stones, has been changed in many ways to meet the requirements in producing flour in varying de grees of fineness. Machines have been invented to make such grooves. A Swiss machine for this purpose consists of two disks carrying diamonds in their peripheries, which, being put in rapid revolution, cut parallel grooves in the face of the stone.

A great advance in milling was made both in America and Europe by the inventions of Oliver

Evans. Evans was born in the State of Delaware, U.S., in 1755, and died in 1819. He was a poor boy and an apprentice to a wheelwright, and while thus engaged his inventive powers were developed. He had an idea of a land carriage propelled without animal power. At the age of 22 he invented a machine for making card teeth, which superseded the old method of making them by hand. Later he invented steam-engines and steam-boats, to which attention will hereafter be called. Entering into business with his brothers within the period extending from 1785 to 1800, he produced those inventions in milling which by the opening of the present century had revolutionised the art. A description of the most important of these inventions was published by him in 1795 in a book entitled The Young Millwright and Miller's Grist. Patents were granted Evans by the States of Delaware, Maryland and Pennsylvania in 1787, and by the U.S. Government in 1790 and 1808.

As these inventions formed the basis of the most important subsequent devices of the century, a brief statement of his system is proper:

From the time the grain was emptied from the waggon to the final production of the finest flour at the close of the process, all manual labour was dispensed with. The grain was first emptied into a box hung on a scale beam where it was weighed, then run into an elevator which raised it to a chamber over cleaning machines through which it was passed, and reclaimed by the same means if desired; then it was run down into a chamber over the hoppers of the mill-stones; when ground it fell from the mill-stones into conveyors and as carried along subjected to the heated air of a kiln drier; then carried into a meal.

elevator to be raised and dropped on to a cooling floor where it was met by what is called a hopper boy, consisting of a central round upright shaft revolving on a pivot, and provided with horizontal arms and sweeps adapted to be raised and lowered and turned, by which means the meal was continually stirred around, lifted and turned on the floor and then gathered on to the bolting hoppers, the bolts being cylindrical sieves of varying degrees of fineness to separate the flour from its coarser impurities, and when not bolted sufficiently, carried by a conveyor called a drill to an elevator to be dumped again into the bolting hoppers and be re-bolted. When not sufficiently ground the same drill was used to carry the meal to the grind stones. It was the design of the process to keep the meal in constant motion from first to last so as to thoroughly dry and cool it, to heat it further in the meantime, and to run the machines so slowly as to prevent the rise and waste of the flour in the form of dust.

The Evans system, with minor modifications and improvements, was the prevailing one for three-quarters of a century. New mills, when erected, were provided with this system, and many mills in their quiet retreats everywhere awoke from their drowsy methods and were equipped with the new one.

But the whole system of milling has undergone another great change within the last thirty years:

During that time it has been learned that the coarser portion or kernel of wheat which lies next to the skin of the berry and between the skin and the heart is the most valuable and nutritious part, as it consists largely of gluten, while the interior consists of starch, which when dry becomes a pearly powder. Under the old systems this coarser part,

« AnteriorContinuar »